Primary Menu

Tag Archives | lean development

Lean in Engineering

Two dimensions of Lean in Engineering
Lean in Engineering / Product Development deals primarily with information as the material to its processes
It goes beyond Lean in Manufacturing in so far as the product is not yet defined

Thus there are 2 dimensions to Lean in Engineering / Product Development:

1.Process dimension:
–mastering processes to meet the time, quality, and cost expectations of the markets
–making processes manageable and measurable
–providing as much space for knowledge and creativity to unfold as possible
2.Product dimension:
–finding the best solutions to a given problem
–changing less in detail phase

Generally, mastering the process dimension is the prerequisite for mastering the product dimension

0

Lean started withThe Wright approach to product development

Wilbur and Orville Wright ran a bicycle repair shop in Dayton, Ohio USA but set to designing and building the first aeroplane  in their spare time working in their shed!

So how did two hobbyists manage to achieve what many well funded, full time, industry backed inventors had failed to achieve?

They collected the existing knowledge on what experiments and tests had already been carried out then studied the results.

They soon realised that many thousands of hours and dollars were being spent for very little time in the air – 5000 hours of design & build time for 5 seconds air time was typical.

They identified 3 critical knowledge areas:

  • construction of the sustaining wings
  •  generation and application of power
  • balancing and steering of the machine

Between 1900 and June  1903 the brothers:

 

Devised

•Lift and drag measurement techniques for kites and gliders
•A wind tunnel
•Balances for measuring lift, drag and drift

Discovered

•Lift and drag calculations that others were using were incorrect
•Optimum wing shapes and ratios
•Optimum control surface areas
Invented
•Wing warping technology to control the plane in flight
•A highly efficient propeller
•A lightweight powerful engine
•The science of aeronautics

They conducted and meticulously recorded extensive experiments.

These often challenged and proved wrong the existing ‘knowledge’ and wisdom of the time.

0

Why Lean Development ?

  • Improving your service and manufacturing systems can only give you limited gains – this is only half the opportunity
  • There is more scope of improvement opportunities if you target the engineering of your service, products and process’
  • It can be more challenging as it is not as easy to see waste and flow
  • Many organisations have implemented lean and explored opportunities in all departments (design, purchasing, engineering, finance, HR etc)
  • They feel that this is what gives them an edge over their competitors
  • Assist in achieving swifter new products development

E.g., Toyota, Ford, Nokia and others,

We understand that we are not Toyota !!!!  However, it is important to understand some of the main differences between the Toyota culture and conventional business cultures when they develop new products as it will help you see where we can make changes to grow stronger as a company.  Also, it will enable you to understand where development systems have originated from.

0

Lean Engineering in Lean Six Sigma

Lean Six Sigma challenges for Service and Product Development are

  • Short life cycles for service offerings, products and technologies
  • Integrated development and quality approach with suppliers
  • Customer expectations becoming more demanding
  • Technology (hard/software) becoming increasingly complex
  • Extremely high requirements for service and manufacturability
  • High impact of poor OTOQOC performance on confidence
  • High costs of development of complex services and products
  • High cost of post design changes, amendments & failures

Short life cycles for both products and technologies.

[Comment: This requires dynamic changes in product designs be managed at the sub-assembly level and coordinated across product lines to gain the most synergy for our development efforts.]

Customers have rising expectations for quality of total service [Comment: Customers don’t care if the problem is a handset or service provider.]

Increasing number of product development projects.

[Comment: Nokia has chosen to compete in all technology areas.  Since technology has not yet consolidated around one or two standards, we face the need to innovate and refresh all product lines on a regular basis.  Most of our competitors are not attempting this same approach.]

Products must be capable of manufacture in the millions.

[Comment: Mistakes cannot be made in production, right the first time is essential or we will not effectively compete in this business.]

Reliance on component parts quality from suppliers.

[Comment: We do not control our own destiny for quality but must seek exceptional partners who can contribute to our overall effort on behalf of our customers.]

Software is complex and interoperability is essential & interoperability is essential.

[Comment: Again, “right the first time” is the rule for software as well as hardware.  We also rely heavily on standards and industry partnerships to assure that we maintain seamless integration between hardware manufacturers and service providers.]

 

 

0